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Abstract—The non-axisymmetric problem of a finite, circular, elastic cylinder, one end of which contacts a
moving, rigid surface in the presence of Coulomb friction while the opposite end is constrained against
in-plane displacements but subjected to a uniform normal displacement, is considered. The governing
differential equations are converted to an infinite system of singular integral equations with the aid of the
Papkovich-Neuber potentials and the subsequent application of muitiple Fourier transformations. These are
solved numerically and the components of stress and displacement at the ends of the cylinder are
determined.

For the frictionless case, the solution is shown to agree closely with known results.

For the frictional case, stresses at the ends of the cylinder are given for two aspect ratios and several
friction coefficients.

{. INTRODUCTION

Recent work in the field of wear testing of materials by Rice and R. Solecki{l] has led the
authors to consider the problem discussed in this paper. Wear testing is accomplished by sliding
a specimen of one material along a counterface, possibly of a different material. For small
specimen sizes, difficulties arise in determining the interface pressure distribution experiment-
ally, so that the analytical determination of the distribution is of practical interest.

The purpose of this paper is to determine the pressure distribution between a rough, rigid,
sliding surface and one end of a finite-length right, circular cylinder, whose opposite end is
constrained against in-plane displacements and given a uniform normal displacement, as
shown in Fig. 1.

An interesting historical account of the cylinder problem up to 1968 can be found in de La
Penha[2] and will not be repeated here. More recently, Benthem and Minderhoud [3] applied the
radial eigenfunction technique to the problem of a cylinder compressed between rough rigid
stamps (Filon’s problem), and obtained accurate results near the circumference of the ends of
the cylinder, where the stress distribution is known to be singular. Their method requires prior
knowledge of the nature of the stress singularity, obtained through the solution of an auxiliary
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Fig. §. Cylinder geometry.
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106 R. J. CoNaNT and R. SOLECKI

problem applicable to the local region containing the singularity. Zak[4] also determined the
singular behavior of the stresses through the solution of an auxiliary problem. This solution was
then matched with a finite element solution at a finite distance from the singularity. Gupta{5]
used an integral transform technique to reduce the problem of a semi-infinite cylinder with one
end fixed to the solution of a singular integral equation, which was solved numerically. By
isolating the singular part of the kernel, the nature of the stress singularity was found directly
from the integral equation.

The most recent work is that of J.S. Solecki and Swedlow[6], who developed a special
5-node finite element to model the corner. An array of these elements was then coupled to a
region of “regular” finite elements to complete the modelling of the cylinder.

Very few solutions exist for the non-axisymmetric cylinder problem. Yao[7] and Steven[8]
obtained solutions for infinite cylinders loaded on the lateral surface, but to the authors’
knowledge no solutions exist for cylinders of finite length.

Here, a non-axisymmetric problem for a finite cylinder with loaded ends and stress-free
lateral surface is converted to the solution of an infinite system of singular integral equations.
This is achieved by first uncoupling the governing differential equations through use of the
Papkovich-Neuber potentials and then applying finite Fourier transformations to the resulting
equations. The integral equations are subsequently reduced, by the collocation method, to an
infinite system of algebraic equations, which are solved by the method of reduction.

While the approach taken by Gupta can be applied to systems of integral equations[9], the
complexity and number of kernels involved in the present problem make it unattractive.
Instead, the approach of Benthem and Minderhoud is followed here by representing those
unknown quantities that are singular as the sum of a singular part of known strength and
unknown intensity and a regular part, in the form of a series.

For the frictionless case, the stresses compare very well with those of Benthem and
Minderhoud. Stresses for the frictional case are given graphically for two values of aspect ratio
(length/diameter) and for several friction coefficients. Stress intensities for both the radial and
tangential shear stresses are given as functions of circumferential location.

2. FORMULATIONT®

Figure 1 shows an isotropic, homogeneous, elastic cylinder of radius R and length . The end
of the cylinder at z =1 is subjected to a uniform longitudinal displacement while the in-plane
displacements are zero. The end of the cylinder at z = 0 contacts a rough, rigid surface that is
moving in the x direction. The lateral surface is stress-free.

In cylindrical coordinates, the displacement components i, v, w in the r, 9, and z directions,
respectively, must satisfy, in the absence of body forces, the following equations:

2 u 2 dv )\+}J. JA
—_ — .__+_.____._
Vu a0 woar ’
2 v 28u A'*‘“,lﬁ_é_
Voot ot T e
v+ AR (la=c)
dz
where the Laplacian and dilatation are, respectively:
2 13,14 &
2E ro +
Vet rat e T
du  1l/dv aw
=t~ +—. 2a,b
v ar+r<69+u) az ( )

tDue to space limitations, many lengthy expressions that arose during the course of the analysis are not presented here.
The interested reader should consult Ref.[11].
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The boundary conditions appropriate to the problem are
on(R, 8, 2) = 0(R, 6, 2) = 0,,(R, 6, 2) =0, (3a—c)
u(r, 9, 3=10v(r,6,)=10,
w(r, 0,)=-W, (4a—c)

0%, ¥, 0) = 0,.(r, 8,0) cos 8 — o,,(r, 6,0) sin 8 = keo,,(r, 8,0),
Uyz(x) Y 0) = a,z(r, 6, 0) sin § + a',,z(r, 6, 0) cos @ = 0,
w(r, 6,0)=0, (5a~c)
where k is the coefficient of sliding friction, and W is a constant. Coulomb friction is assumed.
The x-z plane of the cylinder is a plane of symmetry on which the following conditions
apply:
O'ro(r, grs Z) = Gze(r’ g, Z) == 0’
o(r,, 2)=0. (6a—c)
In addition, it is required that the displacements remain bounded at the origin.

The Papkovich-Neuber potential functions are used to partially uncouple eqns (1). In
cylindrical coordinates, these are defined by:t

u= —(¢ + 1) = 1= ),
=126+ )= 41- )
W= (p+ ), (Ta<)

where v is Poisson’s ratio.
When these are substituted into (1), the following equations defining the potential functions
result:

Ve =0,
T A 1
1 3y,
V- sty + 52 =g, (8a-<)

The stress components are given in terms of the potential functions in Ref. [11].

While the introduction of potential functions leads to a set of equations that is at least
partially uncoupled, the resulting boundary conditions are more complicated. The substitution
of (7) into (3)-{6) results in the following conditions:

24 r Ll s-negy Ly 4 2) g, r=R

Lig 1, 04 o 1, 100\ _

r80+r3r60 araé — A= )(ar r¢°+,—39)‘0y O<és7

Py 2

¢ Y, _&_.
ozt araz+ 3z ~ A=) 3z =0, O0sz=<l] (9a—¢)

1Eubanks and Sternberg{10] have shown that, for convex regions, any component of the vector potential, w, may be
chosen as zero without affecting completeness. In this problem, ¥, =0 was chosen.
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26+ ) =41 = D)y = 0,

r80(¢+rd") 41 - =0, 0<rsR;0s0=<m; z=1

3 .
5;(‘1’ +rp)=-W, (10a—c)

6+ =0,

alfl 8111
4 —tf
0z sin 6 0z

4(1—v)(al’,l' cos § — 22 % sin 0> {§(¢+rw,) 0<o=n
—l [ (¢,)+a“’9]} 0,

%%=aadé'=w9=0, 0<r=R;0=0,m,0=sz=<]/ (12a~c)

cos 6 =0, 0<6=<R

=0 (1la—c)

In addition, the expressions for the displacements, eqns (7), must remain bounded at r = 0.

Equations (8)—(12) define a boundary value problem in terms of the potential functions.
Once solved, the corresponding displacements and stresses can be readily determined from
equations given in[11].

3. REDUCTION OF THE PROBLEM TO A SYSTEM OF INTEGRAL EQUATIONS
The problem can be solved using integral transformations by defining the following trans-
forms:

_ i T
é(r,n, m) EJ j o(r,0,2)cosnfcos A,zd6dz, O0<r=R
0 Jo mn=0,1,2,...

{ "
¥, (r, n, m) Ej j U, (r, 8, z) cos n@ cos A,z d6 dz, 0=r=R
0 Jo

_ - 0

do(r, n,m)= J J’ Pe(r, 8, 2)sinnb cos A,,zdfdz, n
0 Jo

m (13a~c)

where A,, = ma/l. After transformation, eqns (8) become:*

dé(r, n, m), 1dé(r, n, m)
dr’ r dr

= —1G () + (= )" [7#W8qp + rGn(r)], 0<r=<R
nm=0,172,...

- (%; + A,"z)d;(r, n, m)

&g (r,n,m) 1dgr,n,m) (n’ 5\ _ i
e +; i (7+)\m>w,(r,n,m) ?dlr(r,n»m)

=25 Jy(r,m,m) = ()~ (~ D)"Go(r), 0=r=R
nm=0,1,2,...

tEquations (10c), (11a) have been used in obtaining (14a).
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2 7 2 = =
d dJa(drrn m) : dd’O(:;rn’ M) - (!:T + /\m2>d‘0(rs n, m) - ;12 d’O(rs n, m)

25§ mm)= G~ (- D"Gun(r), 0S7=R
0,1,2,... (14a—)
where 8, is the Kronecker Sielta.
The auxiliary functions G;,(r), etc. are as yet undetermined. However, they are related to
the shear stress components at the ends of the cylinder as follows:
16,:(r, 1,0) = =2(1-»)G(r), n=0,1,2,...
16(r 1, )= =21-9)Gn(r), n=0,1,2,...
’ﬂé’sz(", n, 0) = —2(1 - V)G3,,(f), n= 1: 2’ e
nGe(rm, D =-21-1)Gu(r), n=12,... (15a-d)

where a,(r,n, a) EJ' o,(r,8,a)cosnddd, n=0,1,2,...
0

Gor,m, a)= J' ou(r,0,0)sinn0ds, n=1,2,... (16a, b)
0
1+
n="F (1m

and E is Young's modulus.

Equations (14b, c) can be uncoupled, for n >0, by first adding and then subtracting to give
equations for d:, + % and ¢, — st These and eqn (14a) are Fuler’s equations for m =0 and
modified Bessel’s equations for m > 0. Five separate combinations of m and n have to be
considered, and the solutions yielding bounded displacements at the origin are given as:}
n=m=0: d;(r, 0,0)= d;,,(r, 0,0),

4, (r,0,0) = Bor + §i,,(1,0,0), (18a,b)

n=1;m=0: é(r,1,0)= Ayr + &,(r, 1,0),
§,(r, 1,0) = Cyr* + Dy + (1, 1,0),
Jo(r, 1,0) = Cyr? = Dy + (1, 1,0), (19a—c)
n=23...;m=0 é(r,n,0) = As,r" + &, (r, n, 0),
&(r, 1,00 = Apr™ ' + Byr" ™' + gy (r, 1, 0),
Jo(r, n,0)= A" = Byr" ™' + i (r, 1, 0), (20a—)
n=0;m=1,2,... $(r,0, m) = D Iy(Aur) + 6,(r, 0, m),
$,(r,0, m) = B, (Apr) + §i(r, 0, m), (21a,b)
nm=12,... d;(r, n,m)= Cypml,(Ar) + d;,,(r, n,m),
G,(r, 1, m) = CramIy-sAn?) + Conmlyii(Am?) + §ip (1, 1, m),
Fo(r, 1, m) = = CumlpiOAm?) + CanmIns1(Am?) + G (7, 1, m). (22a—c)

The subscript p appearing in certain terms indicates particular solutions, given in[11).

1See Ref. ([12], p. 239).

#Certain constants appearing in these solutions have been chosen as zero because only their derivatives appear in the
transformed displacement expressions.
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The constants contained in (18)~(22) are found by first transforming the boundary conditions
on the lateral surface, eqns (9), and then substituting the above expressions into the resulting
equations. This leads, in general, to a system of 3 algebraic equations and 3 unknowns for each
value of n, m, from which the constants can be determined. After lengthy algebraic manipula-
tions, the constants are found to be:

By= é 7W — Uy(R, 0,0)+ (1~ 21')‘1%7 UAR,0,0) 23)

C, = _% U(R, 1’0)+%(5—-4;;)R“‘U2(R, 1, O)ﬁ‘%(l —21R?UKR, 1,00+ R™U«R, 1,0) (24)
Aup= =3 UR n,0)+3[n +4(1~ IR X UR, n,0)

+ %(n —“DR'ULR, n,0)+ nR X OULR, n,0), n=2,3,...

Cin= —%(n + Din+4(1 - »)]R™ULR, n,0) «-%—{n —4(1 - »)JUAR, 1, 0)

- % n2R X" DUR, n,0)— nUR, n, 0)
— i+ DRUR, n,0), n=273,... (252, b)

where Ci,=nd;, +{n—-4(1-v)}B;, and U(R,0,0), etc. are the particular integrals given
in[11]. Also, for m >0:

3
B == UiR 0, m)+ - {120 - )+ 3123 1K1+ 25 LK,

+21-) 2 }UZ(ROm)w*- —1U4(R0m) m=1,2...

-=~§~{2(1-»>(1 20) = yoll% UsR, 0, m) ~ UR, 0, m)

l " m m
+-é:{ 0= 0+ 7B 1K, —31127 LKo+2(1- ) %,}

2
X U4R,0, m)“;&’(* DWW, m=12,..., (26a,b)
where - -}%"z (21 -v)+ v AL -y}, m=12.... @n
Y = AR (28)

It is understood that the argument of I,, K, is y., unless stated otherwise. For m, n both
greater than zero, the constants can be expressed as:

Cinm = 25-1Zi(n, m)Uj(R,n,m), n,m=1,2,...
i=1,2,3 (29)

The quantities Z;(n, m) are given in[11]. In addition to eqn (24), the transformed boundary
conditions on the lateral surface for n = 1, m =0 yield the following condition:

L ) [Gu(s) = Gusl(8) — Gai(s) + Gar()ls ds =0. (30)
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This equation simply states that, since the lateral surface is stress free and no shear stresses act
on the plane of symmetry, the shear stresses acting on the ends of the cylinder must maintain
its static equilibrium in the x-direction.

The following equations result upon elimination of 8 from the remaining boundary con-
ditions at the ends of the cylinder, eqns (10a, b) and (11b, c):

n=0;
218050, 1+ i (1,0, D] - 1= )3i(,0,D =0,
201~ DG~ G+ k{0,001, 0,01
- 20 2, 0,00} =0, (31a,b)
n=12,

2180, D+ 1 m, D)= 401~ (1, m, D =0,

LB, m, D+ r(r, m, D]+ 4(1 = v)dulr, m, D =0,

Grni(r) = Gy + (1= 8,)Gs (D + Gy g n(r) =0,
(1= )Gy () + Gy s + (1= 8,) G5 (1) = Gy ia (]

2
+ k{22181, 00+ 1utr, 1,0~ 20 L2105, 0
+ nd(r, n, 0)}} =0. (32a-d)

The double-barred quantities can be introduced in (31), (32) via the inversion formula for the
finite Fourier cosine transform.t Expressions (18)-(22) and (23)~(29) are then substituted in the
resulting equations, and the order of summation and integration interchanged. These equations
contain integrals from 0 to r and 0 to R which can be combined so that only the latter remain.
This leads to the following coupled, infinite system of Fredholm integral equations:

[ Gu@rio 8+ [ Gatorato, 9 86 =,

201 - v)G(p) — Gs(P) + k LT Gio(O)xslp, ) dE+k j(: GulE)xyp, £) dE =k(1+ v),

Gin-1(p) = Grasip) + (1 = 8,0G;54-i(p) + G neilp) =0, n=1,2,... O=p<n
il [ Gnl@xinto.£)dg ]+ 80a0=0, n=12,...
0 =1,2
21~ Gynsilp) ~ G (P + KZjo, [f Gin(O)k1alp, €) dg] =0, n=12,...
o (33a—¢)
where
Ao= A~ (G- 4)D], p=7 £=1, TE% Galp) ='ul0), (34)
W

tBecause of the second derivative with respect to z, this involves differentiation of the Fourier sine series which, in
general, is not differentiable term-by-term. See ([13], pp. 137-143).
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The kernels of the integral equations (33) are given by:

ki(p, &) = E[Aip, &) + 225, \(= 1)"By m(p, £)),

kop, £) = —E[Ailp, §) + 22 -1 Bimlp, O],

kip, §) = —[Axp, §) + 227, 1B n(p, )],

kdp, &) ={Axp, &) + 257 (= D"EBom(p, £)), | (352-d)

0=(p)=7

Kin(py &) = E[Alnanalp, ©) + 227 i(= D" Bipgnmalp, ), i=1,2

K§+1,n(P, &= _'f[Ail/z(jH),n(P, £+ 2E:=1Bi1/2(j+1),mn(pv 8l i=12 0=<(p)=r

' w i=1,3

Kin(P, f) = _[AilZ(jH),n(p’ ﬁ) + 22m=l€B §/2(j+l),mn(p’ g)]’ Jn - 17 2’ L
K,?+1,n(P, §) = [A?IZ(j+l),n(py f) + 22:x=1(‘ )™¢B %12(j+l),mn(p’ &l (36a~d)

The quantities appearing in (35), (36) are defined in[11).

The 4n +2 equations (33) contain 4n + 3 unknowns (A,, Gig, Gy, Gjy j=1-4,n=1,2,.. ).
The additional equation needed to solve the system is provided by (30) which, on introducing
the dimensionless quantities (34), becomes:

[ (G i)~ Garl®) — Gan(®) + Gar(£)]€ dé = 0. 37

For the frictionless case (k = 0) eqns (33) reduce to the single integral equation:

fo G Okalp, ) dE = —vp, 0=p<r. (38)

For large values of the summation index, the modified Bessel functions appearing in the infinite
series of eqns (35), (36) can be replaced by their asymptotic formulae. From the resulting
asymptotic expressions it can be seen that certain of the positive series (including the one in «;)
diverge when (27— p—£) =0 and |p — ¢ =0. Thus, certain kernels and, hence, the system of
integral equations (33) are singular.

Once the integral equations are solved, stresses and displacements at any point in the
cylinder can be found. However, because of the length of these expressions, the stresses and
displacements at the ends of the cylinder are given in{11]. Also, the complete expressions for
stresses and displacements in terms of the auxiliary functions can be found in{11}.

4. SOLUTION OF THE INTEGRAL EQUATION —FRICTIONLESS CASE
It is well known that, at the end of the cylinder constrained against in-plane displacements,
both the normal and shear stress components become infinite as the circumference is ap-
proached. This singular behavior is characterized by

C
imo=m—— 39
mo =G o™ 9
where the strength of the singularity, A, satisfies the characteristic equation[3]:
cosz(A 1) _ 41— v)’ (- A)? )
2 3-4v  3-4v

and c is the stress intensity coefficient.t

1This terminology has been chosen to avoid possible confusion with the well-established meaning of “‘stress intensity
factor” in linear fracture mechanics.
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For v =0.25, A is given as[3]:

A =0.25525. 41

The integral equation (38) can be solved by the collocation method. Following Benthem and
Minderhoud{3], the singularity contained in Gyfp) is accounted for explicitly. The numerical
integration is carried out using Simpson’s rule. Because the kernel is singular, the length of the
subinterval in the region near the point £ = p is chosen much smaller than for other regions, and
the integration is performed over the range 0<¢=<(p—¢) and (p+e¢€)=<£&=7 The integral
between (p — €) and (p + €) is evaluated as the sum of two rectangular areas, using the values of
the integrand at (p — €) and (p + ¢). Tests have been run for several values of € and it has been
found that the solution is stable for € <0.0005p.

Three different forms have been used for Gy(p):

Galp) = bifolp) + £1Xabi(B1-1 ) @)
Garlp) = bufulp) + ZiLab cos(i - 2)m & “3)
SN.b;cos(i— D g
Gzo(P) = ('T — p)T (44)
where Ji(B)=0,i=1,2,...
-A
ftpr=(1-2) - (1-8) - 3200+ Dpr o= ), (46)
Equation (42) is that used in[3].
For eqns (42), (43) the radial stress intensity coefficient is:
K, =-2(1-v)b, @n

r .
Ll eavation (46)

L /\ ecvation (47)

-0.2

0.t

 eouation (48}

Yote: Far - .4, tne three equations
aive virtuaily identical results.

. Benthem & Mingernaud (11 unknowns}

1 ] 1L

SO s

’a'rl

- -—l'!

—12:0

-.1736
-.1815

- 175

pIT

10

Fig. 2. Shear stress distribution at z = [ for various basis functions. Frictionless case. /D = 1, v = 0.25.
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and for eqn (44),
K, =-201- L (-1)"'b. (48)

The resulting radial shear stress distribution at z = [, using 5 collocation points, is given in
Fig. 2 for /D =1, v=0.25. The stress distribution obtained by Benthem and Minderhoud[3]
results from a unit normal pressure while that obtained here is for a unit displacement.
Therefore the results obtained in{3] have been multiplied by

1 (7.
T =7 f G..(p, 0)p dp, 49
5 72 0

the average pressure required to produce a unit displacement in the half-cylinder.
Because the stress intensity coefficient obtained from eqn (43) gives the best correlation
with that of [3], subsequent results are based on (43).

5. SOLUTION OF THE INTEGRAL EQUATIONS—FRICTIONAL CASE
Due to the frictional boundary condition, as was shown in[14], the stresses are singular also
at the leading edge of the cylinder at z = 0. The strength of the singularity is a function of 6.
Recalling that Gy.(p), Gs.(p), G2(p) and G,,(p) are related to the radial and tangential
components of shear stress at z =0 and z = [ respectively, the following forms of the auxiliary
functions are used for the frictional case:

——_n__[7__Af)
Oulo)="20 =3 )y T=pryr@ o™

Gon(p) = b1afLp) + Z{Loby, cos[(i — Dmpl7l, n=0,1,2,...

6do+2N,a, cos[(i — Dmp/r], n=0,1,2,...

"™  B(# . ,
Gi(p)= —2(111 V)Io a —p/'r;“(‘” sinn@dé+3N, ¢, cos[(i — Dmplr], n=1,2,...
Gun(p) = dyof Ap) +2iladin cOs[(i = Dmpl7], n=1,2,... (50a-d)
The stress intensity coefficients for shear stresses at z =1 are:

K.(6)=-2(1-v)[b,, +2%5-,b,, cos nb]
Ky(8)=—4(1- )2, _,d,, sin nd (51a,b)

The strength of the singularity at z =0, \,(8), is found as the solution of the following
transcendental equation[14]:

2(1 = )Am — k(1 —2v) cos 6 cos Aym — k cos 8[21,7+4(2— v)A, +7—6v]=0. (52)
The stress intensity coefficients for shear stresses at z = () are also expanded into Fourier series
A(0)=Ay+23,,.,A, cosmb, B(8)=2%,_ B, sinmb. (53)

In the present calculations only the first term in each of the series (53) was retained.
The asymptotic behavior of shear stresses is represented by:

. _ KO 20

Ll_l;l} (T,-z(p, 0, l) - (1 _ p/T))\’ }}E} Uﬁz(py 07 l) (1 —_ p/T)/\
. _AG) _ B S b
EJI_IE U(ps 6? 0) - (1 _ p/_r))‘lieiy LI_IE 0’():(". 9. O) = (1 _ p/T)A]ZmA (., a, )



The end problem of a finite elastic cylinder pressed against a rough, rigid, sliding surface 115

On substituting eqns (50), the system of eqns (33), (37), is reduced to an infinite system of
algebraic equations, which is then solved by the reduction method.

In applying the reduction method to this problem, it has been found that if the system of
equations is truncated when n =P, then accurate values are obtained for the first P -1
auxiliary functions.

The value of P required to give accurate results for the non-axisymmetric behavior depends
on I/D. For IID of 0.1 and 1.0, P =4 is sufficient, while for /D =5, P must be increased to 8.

Figures 3-8 show the normal and shear stresses at the ends of the cylinder, at 8 =0 and =,
for two aspect'ratios and several friction coefficients. The shear stresses shown are o,, rather
than o,,, in order to maintain a continuous slope at the origin. The calculated shear stresses at
z = () agree, for the first four significant figures, with those obtained from multiplying the normal
stress by the friction coefficient and therefore are not shown in the figures.

ety

I*a'u

Fig. 3. Normal stress distribution at z =0 for various friction coefficients. I/D =1, v =0.25.
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5

Fig. 4. Normal stress distribution at z = [ for various friction coefficients. /D = 1, » =0.25.
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-i.0 4,(';“
o —'_‘—Fl
-0.8 —1:0
[j x= 30
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02 p/Ti8:20)

04 |-

Fig. 5. Shear stress distribution at z ={ for various friction coefficients. /D = 1, v =0.25.
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Fig. 6. Normal stress distribution at z =0 for various friction coefficients. I/D =2, v = (.25.

In Fig. S, note that at 6 =0, as the friction coefficient increases, resulting in increased
bending of the cylinder, the slope of the curves decreases near p = 7 and, for large friction
coefficients, the shear stress curve extends to positive infinity. At 8 = 7, the slope of the curves
increases near the outer radius as the friction coefficient increases. This behavior is also seen in
the stress intensity coefficients for o,, at z =, shown in Table 1, indicating that near the
circumference, at § =0, the shear stress is directed toward the center of the cylinder but its
magnitude decreases as the overall bending increases. As the bending increases further, the
shear stress is directed away from the center, and its magnitude increases. At = 1, the shear
stress is directed toward the center and as the overall bending in the cylinder decreases, the
magnitude of o,, increases.

From Fig. 9, it is seen that the circumferential location of the tangential shear stress
intensity coefficient approaches a limit of approximately 57° as the friction coefficient increases.
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Fig. 7. Normal stress distribution at z = for various friction coefficients. /D =2, » = 0.25.
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Fig. 8. Shear stress distribution at z =1 for various friction coeflicients. /D=2, v =0.25.

Table 1. Radial stress intensity
coefficient at 6 =0°, 180° for various
friction coefficients. /D=1, vy =025

k KA0) K180
0.0 -0.1739 -0.1739
0.15 -0.07892 -0.269%
0.2 —0.04781 -0.3018
0.3 0.01367 —0.3665
0.5 0.1339 —0.4964

1.0 0.4335 —0.8254
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Table 2. Tractions at the ends of the cylinder. /D=1, v =025, k=0.15

plr= 0.94 0.84 0.68 0.52 0.36 0.20 0,04 0.04 0.20 0.36 0.52 0.68 084 0.94

oy, (2=1) 0.2124 0.0770 ~0.0150 ~0.0809 ~0.1348 —0.1808 ~0.2215 -0.2397 -0.2742 ~0.3084 ~0.3453 -0.3915 ~0.4633 -0.5299
o (z=1)  -08678 -0.7895 ~0.8535 -0.9324 - 1.005 -1.0602 ~ 11141 -1.1402 -1.1958 -1.2614 ~1.3450 -1.4675 ~1.6924 ~2.0466
o, (2=0)  -17222 ~1.6853 - 15510 ~1.4565 -1.3860 ~1.3298 ~1.2801 —-1.2553 ~1.2031 -1.1429 ~1.0696 ~0.9761 ~0.8642 -0.8520
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Fig. 9. Tangential stress intensity coefficient vs 6. Several friction coefficients. D=1, v =0.25, z =1

For small values of the friction coefficient, the location of the peak approaches 90°, and the
magnitude decreases to zero as the friction coefficient tends to zero.
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